Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Protein J ; 43(1): 12-23, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932619

RESUMO

Eis (Enhanced intracellular survival) protein is an aminoglycoside acetyltransferase enzyme classified under the family - GNAT (GCN5-related family of N-acetyltransferases) secreted by Mycobacterium tuberculosis (Mtb). The enzymatic activity of Eis results in the acetylation of kanamycin, thereby impairing the drug's action. In this study, we expressed and purified recombinant Eis (rEis) to determine the enzymatic activity of Eis and its potential inhibitor. Glide-enhanced precision docking was used to perform molecular docking with chosen ligands. Quercetin was found to interact Eis with a maximum binding affinity of -8.379 kcal/mol as compared to other ligands. Quercetin shows a specific interaction between the positively charged amino acid arginine in Eis and the aromatic ring of quercetin through π-cation interaction. Further, the effect of rEis was studied on the antibiotic activity of kanamycin A in the presence and absence of quercetin. It was observed that the activity of rEis aminoglycoside acetyltransferase decreased with increasing quercetin concentration. The results from the disk diffusion assay confirmed that increasing the concentration of quercetin inhibits the rEis protein activity. In conclusion, quercetin may act as a potential Eis inhibitor.


Assuntos
Aminoglicosídeos , Mycobacterium tuberculosis , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Aminoglicosídeos/farmacologia , Quercetina/farmacologia , Quercetina/metabolismo , Proteínas de Bactérias/química , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Canamicina/farmacologia , Canamicina/química , Canamicina/metabolismo , Acetiltransferases/genética , Acetiltransferases/química , Inibidores Enzimáticos/química
2.
Environ Sci Technol ; 57(10): 4298-4307, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36857046

RESUMO

Biodegradation using enzyme-based systems is a promising approach to minimize antibiotic loads in the environment. Aminoglycosides are refractory antibiotics that are generally considered non-biodegradable. Here, we provide evidence that kanamycin, a common aminoglycoside antibiotic, can be degraded by an environmental bacterium through deglycosylation of its 4'-amino sugar. The unprecedented deglycosylation inactivation of kanamycin is initiated by a novel periplasmic dehydrogenase complex, which we designated AquKGD, composed of a flavin adenine dinucleotide-dependent dehydrogenase (AquKGDα) and a small subunit (AquKGDγ) containing a twin-arginine signal sequence. We demonstrate that the formation of the AquKGDα-AquKGDγ complex is required for both the degradation activity of AquKGD and its translocation into the periplasm. Native AquKGD was successfully expressed in the periplasmic space of Escherichia coli, and physicochemical analysis indicated that AquKGD is a stable enzyme. AquKGD showed excellent degradation performance, and complete elimination of kanamycin from actual kanamycin manufacturing waste was achieved with immobilized AquKGD. Ecotoxicity and cytotoxicity tests suggest that AquKGD-mediated degradation produces less harmful degradation products. Thus, we propose a novel enzymatic antibiotic inactivation strategy for effective and safe treatment of recalcitrant kanamycin residues.


Assuntos
Antibacterianos , Canamicina , Antibacterianos/farmacologia , Antibacterianos/química , Canamicina/farmacologia , Canamicina/química , Canamicina/metabolismo , Periplasma/metabolismo , Escherichia coli/metabolismo , Oxirredutases/metabolismo
3.
Biochemistry ; 62(3): 710-721, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36657084

RESUMO

Over one and a half million people die of tuberculosis (TB) each year. Multidrug-resistant TB infections are especially dangerous, and new drugs are needed to combat them. The high cost and complexity of drug development make repositioning of drugs that are already in clinical use for other indications a potentially time- and money-saving avenue. In this study, we identified among existing drugs five compounds: azelastine, venlafaxine, chloroquine, mefloquine, and proguanil as inhibitors of acetyltransferase Eis from Mycobacterium tuberculosis, a causative agent of TB. Eis upregulation is a cause of clinically relevant resistance of TB to kanamycin, which is inactivated by Eis-catalyzed acetylation. Crystal structures of these drugs as well as chlorhexidine in complexes with Eis showed that these inhibitors were bound in the aminoglycoside binding cavity, consistent with their established modes of inhibition with respect to kanamycin. Among three additionally synthesized compounds, a proguanil analogue, designed based on the crystal structure of the Eis-proguanil complex, was 3-fold more potent than proguanil. The crystal structures of these compounds in complexes with Eis explained their inhibitory potencies. These initial efforts in rational drug repositioning can serve as a starting point in further development of Eis inhibitors.


Assuntos
Acetiltransferases , Mycobacterium tuberculosis , Tuberculose , Humanos , Acetiltransferases/antagonistas & inibidores , Antituberculosos/farmacologia , Antituberculosos/química , Proteínas de Bactérias/antagonistas & inibidores , Canamicina/farmacologia , Canamicina/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Proguanil/metabolismo , Tuberculose/tratamento farmacológico
4.
Molecules ; 27(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364310

RESUMO

Chemical modification of old drugs is an important way to obtain new ones, and it has been widely used in developing new aminoglycoside antibiotics. However, many of the previous modifying strategies seem arbitrary for their lack of support from structural biological detail. In this paper, based on the structural information of aminoglycoside and its drug target, we firstly analyzed the reason that some 2'-N-acetylated products of aminoglycosides caused by aminoglycoside-modifying enzyme AAC(2') can partially retain activity, and then we designed, synthesized, and evaluated a series of 2'-modified kanamycin A derivatives. Bioassay results showed our modifying strategy was feasible. Our study provided valuable structure-activity relationship information, which would help researchers to develop new aminoglycoside antibiotics more effectively.


Assuntos
Aminoglicosídeos , Canamicina , Canamicina/farmacologia , Canamicina/química , Aminoglicosídeos/química , Antibacterianos/química , Relação Estrutura-Atividade , Bioensaio , Acetiltransferases
5.
Mikrochim Acta ; 189(11): 417, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242691

RESUMO

A "signal-on" dual-mode aptasensor based on photoelectrochemical (PEC) and electrochemical (EC) signals was established for kanamycin (Kana) assay by using a novel Z-scheme AgBr/AgI-Ag-CNTs composite as sensing platform, an aptamer structure switch, and K3[Fe(CN)6] as photoelectron acceptor and electrochemical signal indicator. The aptamer structure switch was designed to obtain a "signal-off" state, which included an extended Kana aptamer (APT), one immobilized probe (P1), and one blocking probe (P2) covalently linked with graphdiyne oxide (GDYO) nanosheets. P1, P2, and aptamer formed the double helix structure, which resulted in the inhibited photocurrent intensity because of the weak conductivity of double helix layer and serious electrostatic repulsion of GDYO towards K3[Fe(CN)6]. In the presence of Kana, APT specifically bound to the target and dissociated from P1 and P2, and thus, a "signal-on" state was initiated by releasing P2-GDYO from the platform. Based on the sensing platform and the aptamer structure switch, the dual-mode aptasensor realized the linear determination ranges of 1.0 pM-2.0 µM with a detection limit (LOD) of 0.4 pM (for PEC method) and 10 pM-5.0 µM with a LOD of 5 pM (for EC method). The aptasensor displayed good application potential for Kana test in real samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Dimaprit/análogos & derivados , Grafite , Canamicina/química , Óxidos
6.
Luminescence ; 37(11): 1964-1971, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36063361

RESUMO

The improper conformation of oligonucleotides on gold nanoparticle surfaces is caused by unintended base adsorption, which hinders DNA hybridization and lowers colloidal stability. In this work, we treated spherical nucleic acids with Br- , which serves as an efficient backfilling agent, to adjust the DNA conformation by displacing bases from the gold surface. To investigate the effect of DNA conformation on interfacial recognition, a kanamycin fluorescent aptasensor was constructed with bromide backfilled-treated spherical nucleic acids. In the presence of kanamycin, the anchored aptamer binds with the target and the partially complementary reporter strand is dissociated from the surface of the gold nanoparticles, resulting in the fluorescence recovery of labelled fluorophore on the reporter strand. Under optimum conditions, the apparent binding affinity of the aptasensor with bromide backfilling was 2.2-fold that without backfilled one. The proposed aptasensor exhibited a good liner relationship between the concentration of kanamycin and fluorescence intensity change in the range 200 nM to 10 µM and the limit of detection was calculated to be 71.53 nM. Moreover, this aptasensor was also successfully applied in a spiked milk sample assay and the satisfactory recoveries were obtained in the range 96.94-101.57%, which demonstrated its potential in practical applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Ácidos Nucleicos , Animais , Canamicina/análise , Canamicina/química , Ouro/química , Brometos , Ácidos Nucleicos/análise , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Leite/química , Conformação de Ácido Nucleico , Técnicas Biossensoriais/métodos , Limite de Detecção
7.
Eur J Med Chem ; 242: 114698, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037791

RESUMO

A clinically significant mechanism of tuberculosis resistance to the aminoglycoside kanamycin (KAN) is its acetylation catalyzed by upregulated Mycobacterium tuberculosis (Mtb) acetyltransferase Eis. In search for inhibitors of Eis, we discovered an inhibitor with a substituted benzyloxy-benzylamine scaffold. A structure-activity relationship study of 38 compounds in this structural family yielded highly potent (IC50 ∼ 1 µM) Eis inhibitors, which did not inhibit other acetyltransferases. Crystal structures of Eis in complexes with three of the inhibitors showed that the inhibitors were bound in the aminoglycoside binding site of Eis, consistent with the competitive mode of inhibition, as established by kinetics measurements. When tested in Mtb cultures, two inhibitors (47 and 55) completely abolished resistance to KAN of the highly KAN-resistant strain Mtb mc2 6230 K204, likely due to Eis inhibition as a major mechanism. Thirteen of the compounds were toxic even in the absence of KAN to Mtb and other mycobacteria, but not to non-mycobacteria or to mammalian cells. This, yet unidentified mechanism of toxicity, distinct from Eis inhibition, will merit future studies along with further development of these molecules as anti-mycobacterial agents.


Assuntos
Acetiltransferases , Mycobacterium tuberculosis , Acetiltransferases/química , Aminoglicosídeos/farmacologia , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antituberculosos/química , Proteínas de Bactérias , Benzilaminas/farmacologia , Canamicina/química , Canamicina/farmacologia , Mamíferos/metabolismo , Mycobacterium tuberculosis/metabolismo
8.
Anal Chem ; 94(16): 6410-6416, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35420408

RESUMO

Based on luminol-capped Pt-tipped Au bimetallic nanorods (NRs) (L-Au-Pt NRs) as the anode emitter and SnS2 quantum dots (QDs) hybrid Eu metal organic frameworks (MOFs) (SnS2 QDs@Eu MOFs) as the cathode emitter, a dual-signal electrochemiluminescence (ECL) platform was designed for the ultrasensitive and highly selective detection of kanamycin (KAN). Using a dual-signal output mode, the ratiometric ECL aptasensor largely eliminates false-positives or false-negatives by self-calibration in the KAN assay process. To stimulate the resonance energy transform (RET) system, the KAN aptamer and complementary DNA are introduced for conjugation between the donor and acceptor. With the specific recognition of target KAN by its aptamer, L-Au-Pt NRs-apt partially peels off from the electrode surface. Eventually, the RET system is removed, leading to an increasing cathode signal and a decreasing anode signal. In view of this phenomenon, the ratiometric aptasensor can quantify KAN from 1 pM to 10 nM with a low detection limit of 0.32 pM. This dual-signal ECL aptasensor exhibits great practical potential in environmental monitoring and food safety.


Assuntos
Técnicas Biossensoriais , Canamicina/análise , Estruturas Metalorgânicas , Pontos Quânticos , Técnicas Eletroquímicas , Canamicina/química , Medições Luminescentes
9.
Biosens Bioelectron ; 207: 114187, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35325717

RESUMO

Simple assay format-based SERS methods for sensitive target substance analysis is of great significance for the development of on-site monitoring biosensors. Herein, taking the typical antibacterial kanamycin (KANA) as a subject, a simple, highly sensitive and specific SERS aptasensor was developed by manipulating DNA hydrogel network to fish plasmonic core-shell nanoparticles. A competitive binding mode of aptamer, ligation-rolling circle amplification (L-RCA), gap-containing Au@Au nanoparticles (GCNPs) with embedded Raman reporters were integrated into the sensor. In the presence of KANA, the double stranded DNA (dsDNA) structure of the aptamer was disrupted, and the released primers were used to construct two kinds of circularized padlock probes (CPPs) which were partially complementary. DNA hydrogel network was formed through the intertwining and self-assembly of two RCA-generated single stranded DNA (ssDNA) chains, during which GCNPs and magnetic beads (MBs) were entangled and incorporated. Finally, KANA quantification was successfully achieved through the quantification of the DNA hydrogel. Overall, this novel SERS aptasensor realized a simple and ultrasensitive quantification of KANA down to 2.3 fM, plus excellent selectivity, and precision even for real food samples. In view of innovative fusion across L-RCA-based DNA hydrogel and SERS technique, the proposed method has promising potential for application in on-site detection and quantification of trace food contaminants.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Animais , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA/química , DNA de Cadeia Simples , Ouro/química , Hidrogéis , Canamicina/química , Limite de Detecção , Nanopartículas Metálicas/química , Técnicas de Amplificação de Ácido Nucleico/métodos
10.
Environ Res ; 206: 112617, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34968433

RESUMO

The abuse of antibiotics has caused serious threat to human health, so it is of great significance to develop a simple and sensitive method for the detection of trace residues of antibiotics in the environment and food. Herein, a novel label-free fluorescent biosensing platform based on the fluorescence change of aptamers-capped zeolitic imidazolate framework-8 (ZIF-8) @ 2,2',2″,2‴-((ethene-1,1,2,2-tetrayltetrakis (benzene-4,1-diyl)) tetrakis (oxy)) tetraacetic acid (TPE) through ATP-assisted competitive coordination reaction was designed for such an end. ZIF-8@TPE/Aptamer (Apt) emits strong fluorescence at 425 nm in HEPES buffer due to the aggregation induced luminescence properties of TPE molecules in confined state. Once kanamycin was added, the conformation of aptamer capped on the surface of ZIF-8@TPE changes because of the specific recognition of kanamycin with aptamer, leading to the collapse of ZIF-8 and release of TPE, accompanied with a dramatic decrease of fluorescence intensity. Under the optimal conditions, a good correlation was obtained between the fluorescence intensity of ZIF-8@TPE/Apt and the concentration of kanamycin ranging from 10 to 103 ng/mL with a detection limit of 7.3 ng/mL. The satisfactory analytical performance of the assay for kanamycin detection suggests good prospect for its application in food safety analysis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Estruturas Metalorgânicas , Aptâmeros de Nucleotídeos/química , Humanos , Canamicina/análise , Canamicina/química , Limite de Detecção
11.
Ultrasonics ; 120: 106651, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34847528

RESUMO

A microbial test-system for real-time determination of low/residual concentrations of kanamycin in a liquid without the need for special labels is presented. The main element of the system was a piezoelectric resonator excited by a lateral electric field based on an X-cut lithium niobate plate 0.5 mm thick with two rectangular electrodes on one side. On the other side of the resonator, there was a 1.5 ml liquid container. As a sensory element we used Escherichia coli B-878 microbial cells, which are sensitive to kanamycin. For measurement 1 ml of this cells suspension was placed in a liquid container and then the test liquid in the amount of 2 µl containing kanamycin was added. The change in the real part of the electrical impedance of the resonator before and after the test liquid addition was used as an analytical signal which indicated the presence of kanamycin. The lower limit of determination of kanamycin turned out to be 1.0 µg/ml with an analysis time of 10 min. The test-system allows to detect kanamycin in the presence of such antibiotic as ampicillin and polymixin.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Canamicina/química , Antibacterianos/química , Impedância Elétrica , Escherichia coli/efeitos dos fármacos , Nióbio/química , Óxidos/química , Suspensões
12.
Anal Chem ; 93(4): 2589-2595, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33410662

RESUMO

Selective and sensitive determination of trace kanamycin in complex food samples is of great importance for food safety because of its high toxicity. Here, we report a sensitive and autofluorescence-free persistent luminescence (PL) aptasensor for selective, sensitive, and autofluorescence-free determination of kanamycin in food samples. The aptamer for kanamycin was first conjugated onto the surface of magnetic nanoparticles Fe3O4 to serve as the recognition unit as well as the separation element, while the PL nanoparticles ZnGa2O4:Cr (PLNPs) were functionalized with the aptamer complementary DNA (cDNA) as the PL signal. The PL aptasensor consisted of the aptamer-conjugated MNPs (MNPs-apt) and cDNA-functionalized PLNPs (PLNPs-cDNA) and combined the merits of the long-lasting luminescence of PLNPs, the magnetic separation ability of MNPs as well as the selectivity of the aptamer, offering a promising approach for autofluorescence-free determination of kanamycin in food samples. The proposed aptasensor showed excellent linearity in the range from 1 pg mL-1 to 5 ng mL-1 with a limit of detection of 0.32 pg mL-1. The precision for 11 replicate determinations of 100 pg mL-1 kanamycin was 3.1% (relative standard deviation). The developed aptasensor was applied for the determination of kanamycin in milk and honey samples with the recoveries of 95.4-106.3%. The proposed aptasensor is easily extendable to other analytes by simply replacing the aptamer, showing great potential as a universal aptasensor platform for selective, sensitive, and autofluorescence-free detection of hazardous analytes in food samples.


Assuntos
Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Canamicina/química , Medições Luminescentes/métodos , Animais , Técnicas Biossensoriais , Compostos Ferrosos , Mel/análise , Nanopartículas Metálicas , Leite/química , Pós/química
13.
Future Med Chem ; 13(4): 379-392, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33399487

RESUMO

Gap-junction channels formed by two connexin hemichannels play diverse and pivotal roles in intercellular communication and regulation. Normally hemichannels at the plasma membrane participate in autocrine and paracrine signaling, but abnormal increase in their activity can lead or contribute to various diseases. Selective inhibitors toward connexin hemichannels are of great interest. Among more than 20 identified isoforms of connexins, connexin 43 (Cx43) attracts the most interest due to its prevalence and link to cell damage in many disorders or diseases. Traditional antibacterial kanamycin decorated with hydrophobic groups yields amphiphilic kanamycins that show low cytotoxicity and prominent inhibitory effect against Cx43. This review focuses on the development of amphiphilic kanamycins as connexin hemichannel inhibitors and their future perspective.


Assuntos
Conexina 43/antagonistas & inibidores , Conexina 43/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Canamicina/química , Canamicina/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Relação Estrutura-Atividade
14.
FEBS J ; 288(4): 1366-1386, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32592631

RESUMO

Kanamycin A is an aminoglycoside antibiotic isolated from Streptomyces kanamyceticus and used against a wide spectrum of bacteria, including Mycobacterium tuberculosis. Biosynthesis of kanamycin involves an oxidative deamination step catalyzed by kanamycin B dioxygenase (KanJ), thereby the C2' position of kanamycin B is transformed into a keto group upon release of ammonia. Here, we present for the first time, structural models of KanJ with several ligands, which along with the results of ITC binding assays and HPLC activity tests explain substrate specificity of the enzyme. The large size of the binding pocket suggests that KanJ can accept a broad range of substrates, which was confirmed by activity tests. Specificity of the enzyme with respect to its substrate is determined by the hydrogen bond interactions between the methylamino group of the antibiotic and highly conserved Asp134 and Cys150 as well as between hydroxyl groups of the substrate and Asn120 and Gln80. Upon antibiotic binding, the C terminus loop is significantly rearranged and Gln80 and Asn120, which are directly involved in substrate recognition, change their conformations. Based on reaction energy profiles obtained by density functional theory (DFT) simulations, we propose a mechanism of ketone formation involving the reactive FeIV  = O and proceeding either via OH rebound, which yields a hemiaminal intermediate or by abstraction of two hydrogen atoms, which leads to an imine species. At acidic pH, the latter involves a lower barrier than the OH rebound, whereas at basic pH, the barrier leading to an imine vanishes completely. DATABASES: Structural data are available in PDB database under the accession numbers: 6S0R, 6S0T, 6S0U, 6S0W, 6S0V, 6S0S. Diffraction images are available at the Integrated Resource for Reproducibility in Macromolecular Crystallography at http://proteindiffraction.org under DOIs: 10.18430/m36s0t, 10.18430/m36s0u, 10.18430/m36s0r, 10.18430/m36s0s, 10.18430/m36s0v, 10.18430/m36s0w. A data set collection of computational results is available in the Mendeley Data database under DOI: 10.17632/sbyzssjmp3.1 and in the ioChem-BD database under DOI: 10.19061/iochem-bd-4-18.


Assuntos
Proteínas de Bactérias/metabolismo , Dioxigenases/metabolismo , Canamicina/análogos & derivados , Streptomyces/enzimologia , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Sequência de Carboidratos , Domínio Catalítico , Cristalografia por Raios X , Dioxigenases/química , Dioxigenases/genética , Canamicina/química , Canamicina/metabolismo , Cinética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Streptomyces/genética , Especificidade por Substrato
15.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471121

RESUMO

(1) Background: Compounds with multitarget activity are of interest in basic research to explore molecular foundations of promiscuous binding and in drug discovery as agents eliciting polypharmacological effects. Our study has aimed to systematically identify compounds that form complexes with proteins from distinct classes and compare their bioactive conformations and molecular properties. (2) Methods: A large-scale computational investigation was carried out that combined the analysis of complex X-ray structures, ligand binding modes, compound activity data, and various molecular properties. (3) Results: A total of 515 ligands with multitarget activity were identified that included 70 organic compounds binding to proteins from different classes. These multiclass ligands (MCLs) were often flexible and surprisingly hydrophilic. Moreover, they displayed a wide spectrum of binding modes. In different target structure environments, binding shapes of MCLs were often similar, but also distinct. (4) Conclusions: Combined structural and activity data analysis identified compounds with activity against proteins with distinct structures and functions. MCLs were found to have greatly varying shape similarity when binding to different protein classes. Hence, there were no apparent canonical binding shapes indicating multitarget activity. Rather, conformational versatility characterized MCL binding.


Assuntos
Quimioinformática , Proteínas/química , Proteínas/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Indometacina/química , Indometacina/metabolismo , Canamicina/química , Canamicina/metabolismo , Ligantes , Lipídeos/química , Ligação Proteica
16.
Mikrochim Acta ; 187(6): 360, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32468208

RESUMO

The preparation of portable colorimetric biosensor strips is described by combining aptamer-immobilized electrospun nanofiber membranes (A-NFMs) with signal probes (DNA-conjugated gold nanoparticles (AuNPs)) for determination of kanamycin (KMC) as a model analyte. The A-NFMs were decorated with complementary single-stranded DNA (cDNA) of KMC aptamer-conjugated AuNPs (cDNA@Au) to get the colorimetric biosensor strips. The constructed biosensor strips showed a significant absorbance decreasing band at 510 nm which induce a visual color change from pink to white when exposed to KMC, with a low detection limit of 2.5 nM (at S/N = 3). The effect is due to disassembling of cDNA@Au from NFMs in the presence of KMC because the aptamer has a higher affinity to KMC than its complementary DNA, which resulted in replacing cDNA@Au with KMC. Satisfactory performance was observed in real sample (drinking water and milk) analysis with a recovery of 98.9-102.2%. The constructed colorimetric biosensor test strips hold great application promise for food safety control. Graphical abstract Schematic representation of biosensor strips for kanamycin detection prepared with the cDNA@Au immobilized aptamer-based cellulose acetate nanofibers.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA Complementar/química , Canamicina/análise , Nanopartículas Metálicas/química , Nanofibras/química , Animais , Antibacterianos/análise , Antibacterianos/química , Aptâmeros de Nucleotídeos/genética , Celulose/análogos & derivados , Celulose/química , Colorimetria/métodos , DNA Complementar/genética , Água Potável/análise , Contaminação de Alimentos/análise , Ouro/química , Canamicina/química , Limite de Detecção , Leite/química , Hibridização de Ácido Nucleico , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
17.
Biochemistry ; 59(15): 1470-1473, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32237736

RESUMO

Kanosamine (3-amino-3-deoxy-d-glucose) is a characteristic sugar unit found in kanamycins, a group of aminoglycoside antibiotics. The kanosamine moiety originates from d-glucose in kanamycin biosynthesis. However, the timing of the replacement of the 3-OH group of the d-glucose-derived biosynthetic intermediate with the amino group is elusive. Comparison of biosynthetic gene clusters for related aminoglycoside antibiotics suggests that the nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenase KanD2 and the pyridoxal 5'-phosphate (PLP)-dependent aminotransferase KanS2 are responsible for the introduction of the amino group at the C3 position of kanosamine. In this study, we demonstrated that KanD2 and KanS2 convert kanamycin A, B, and C to the corresponding 3″-deamino-3″-hydroxykanamycins (3″-hks) in the presence of PLP, 2-oxoglutarate, and NADH via a reverse reaction in the pathway. Furthermore, we observed that all of the 3″-hks are oxidized by KanD2 with NAD+, but d-glucose, UDP-d-glucose, d-glucose 6-phosphate, and d-glucose 1-phosphate are not. Crystal structure analysis of KanD2 complexed with 3″-hkB and NADH illustrated the selective recognition of pseudotrisaccharides, especially the d-glucose moiety with 2-deoxystreptamine, by a combination of hydrogen bonds and CH-π interactions. Overall, it was clarified that the kanosamine moiety of kanamycins is constructed after the glucosylation of the pseudodisaccharide biosynthetic intermediates in kanamycin biosynthesis.


Assuntos
Canamicina/biossíntese , Oxirredutases/metabolismo , Transaminases/metabolismo , Configuração de Carboidratos , Glucosamina/química , Glucosamina/metabolismo , Canamicina/química , Modelos Moleculares , Oxirredutases/química , Transaminases/química
18.
Analyst ; 145(8): 2975-2981, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32118243

RESUMO

DNA walkers, one of the artificial molecular machines which are constructed via smart synthetic DNA, have attracted rapidly growing attention from researchers in the biosensing field. In this work, we design an Exonuclease III (Exo III)-aided target-aptamer binding recycling (ETBR) activated bipedal DNA machine for highly sensitive electrochemical detection of antibiotics. To the best of our knowledge, this is the first time that a bipedal DNA machine has been applied in electrochemical sensing for antibiotics. On the one hand, the bipedal DNA walker exceeds the conventional single swing arm DNA walker in terms of walking efficiency and stability. On the other hand, the ETBR strategy, along with efficient strand displacement amplification via stepwise movement of a bipedal DNA walker significantly promotes the signal amplification efficiency. Under optimal conditions, this bipedal DNA machine possesses a detection limit of 7.1 fM within a linear detection range from 10 fM to 100 pM. Moreover, this electrochemical biosensor is expected to detect a wide variety of analytes using the corresponding target recognition probes. Thus, our proposed strategy offers a highly efficient, stable and practical platform for small molecule analysis.


Assuntos
Antibacterianos/análise , Técnicas Biossensoriais/métodos , DNA/química , Técnicas Eletroquímicas/métodos , Canamicina/análise , Antibacterianos/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Técnicas Biossensoriais/instrumentação , DNA/genética , Água Potável/análise , Técnicas Eletroquímicas/instrumentação , Eletrodos , Exodesoxirribonucleases/química , Sequências Repetidas Invertidas , Canamicina/química , Limite de Detecção , Azul de Metileno/química , Hibridização de Ácido Nucleico , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
19.
Mikrochim Acta ; 187(3): 176, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076892

RESUMO

The authors describe a microfluidic chip-based aptasensor platform combined with magnetic tripartite DNA structure-functionalized nanocomposites to achieve simultaneous determination of kanamycin (KANA), aflatoxin M1 (AFM1), and 17ß-estradiol (E2) in milk. The two-duplex tripartite DNA nanostructure was first assembled on the surface of magnetic beads. When the aptamer on the probes recognized the specific target, the aptamer-target would be released into the supernatant. The pre-primer@circular DNA template structure initiates rolling circle amplification (RCA) by phi29 polymerase. After magnetic separation, the magnetic nanocomposites were added into a solution containing three different lengths of complementary strands to the RCA products. The number of complementary strands significantly decrease, and this can be quantitated by the microfluidic chip. Further, the employment of magnetic nanocomposites and microfluidic chip not only resolve the complex matrix interference, but also dramatically enhances the determination selectivity and sensitivity. This aptasensor allows for determination of KANA, AFM1, and E2 with limits of detection as low as 0.32 pg mL-1, 0.95 pg mL-1, and 6.8 pg mL-1, respectively. This novel method exhibits the advantages of excellent stability and fast response time (< 3 min on microfluidic chip platform) for simultaneous determination of KANA, AFM1, and E2 in milk samples and ensures food safety. Graphical abstract.


Assuntos
Aflatoxina M1/química , Sondas de DNA/química , Estradiol/química , Canamicina/química , Microfluídica/métodos , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Humanos , Fenômenos Magnéticos
20.
Acta Crystallogr D Struct Biol ; 75(Pt 12): 1129-1137, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31793906

RESUMO

Aminoglycoside phosphotransferases (APHs) are one of three families of aminoglycoside-modifying enzymes that confer high-level resistance to the aminoglycoside antibiotics via enzymatic modification. This has now rendered many clinically important drugs almost obsolete. The APHs specifically phosphorylate hydroxyl groups on the aminoglycosides using a nucleotide triphosphate as the phosphate donor. The APH(2'') family comprises four distinct members, isolated primarily from Enterococcus sp., which vary in their substrate specificities and also in their preference for the phosphate donor (ATP or GTP). The structure of the ternary complex of APH(2'')-IIIa with GDP and kanamycin was solved at 1.34 Šresolution and was compared with substrate-bound structures of APH(2'')-Ia, APH(2'')-IIa and APH(2'')-IVa. In contrast to the case for APH(2'')-Ia, where it was proposed that the enzyme-mediated hydrolysis of GTP is regulated by conformational changes in its N-terminal domain upon GTP binding, APH(2'')-IIa, APH(2'')-IIIa and APH(2'')-IVa show no such regulatory mechanism, primarily owing to structural differences in the N-terminal domains of these enzymes.


Assuntos
Enterococcus/enzimologia , Guanosina Trifosfato/química , Canamicina/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X/métodos , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...